返回首页 >

AI看病遇上真人会“掉链子”?

2026-02-10 19:19   科技日报

  当大语言模型在医师资格考试中都能取得高分时,人们曾期待它能成为贴身的“AI健康助手”。然而《自然·医学》发表的一项在英国展开的研究表明,这些实验室里的“优等生”在面对真实用户时,表现却有可能意外“掉链子”——它们协助普通人作健康决策的效果,并未超越互联网搜索引擎。这项发现为当前火热的AI医疗应用,敲响了一记科学的警钟:人们会不会高估了当前大语言模型辅助普通人作健康决策的能力?

  当前全球医疗体系正尝试将大语言模型打造为公众的“第一道健康防线”,帮助人们在就诊前进行自我评估与管理。然而,该研究揭示了一个关键落差:在标准测试中表现优异的AI模型,一旦面对真实场景中的普通人,其表现可能大打折扣。

  牛津互联网研究所科学家设计了一个贴近生活的实验:邀请近1300名英国参与者,模拟应对感冒、贫血、胆结石等十种常见健康场景,并决定该采取何种行动——是拨打急救电话,还是预约家庭医生。参与者被随机分配使用三种主流大语言模型(GPT-4o、Llama3或CommandR+)之一,或使用互联网搜索引擎作为对照。

  结果出现了有趣的“人机鸿沟”:当不用人类受试者进行测试时,AI表现非常出色,平均能识别94.9%的疾病,并在超过半数情况下给出恰当建议。但当普通人使用相同模型时,疾病识别率骤降至不足35%,行动建议准确率也低于45%,甚至未显著优于互联网搜索引擎。

猜你喜欢

热点新闻

{$loop_num=0}